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We examine the problem of thermocapillary motion in a system of two immiscible 
fluids with a linear temperature distribution at the bottom. To a first approx- 
imation in small Marangoni number we obtain a solution for velocity, temper- 
ature, and pressure in each layer. 

Knowledge of the principles of thermal convection in layered liquid systems is of inter- 
est for understanding the hydrodynamics and heat- and mass-exchange processes in the applica- 
tion of multi-layer coverings. 

Investigation of thermocapillary convection in systems of several immiscible fluid lay- 
ers has been stimulated, on the one hand, by the development of methods which intensify con- 
vective fluid mixing under the influence of thermocapillary convection (chemical technology), 
and on the other, by the search for methods which suppress convective mixing (material science 
in outer space) by means of suitable selection of configuration and parameters of the fluid 
layers [i, 2]. 

The exact solution obtained here for temperature and pressure allows us to reveal inter- 
esting features of thermocapillary motion in a two-layered system. It can also serve as 
a standard solution for the verification of numerical computer programs. 

We consider the motion in a system of two plane layers of viscous, incompressible fluids 
of thicknesses H l and H2, respectively (Fig. i). We assume that the fluids do not intermix 
and that the fluid density of the upper layer is less than that of the lower (Pl > P2). The 
lower boundary of the system is a solid surface. We consider that a constant linear tempera- 
ture distribution is maintained at the rigid boundary. At the fluid--fluid boundary a tan- 
gential thermocapillary stress acts, due to the nonuniform temperature distribution. The 
coefficient of surface tension depends on temperature according to the nonlinear law 

1 
~1 = do1 + ~ g l  (Y l  - -  To)2; ~ol = const, g l  = const. 

Here T O is the value of the temperature corresponding to the extremal value of the coefficient 
of surface tension. 

The thermocapillary motion with such a dependency has previously been studied in [3, 
4]. 

We seek the distributions of temperature and velocity in each of the fluid layers when 
the upper boundary of the system is: i) a solid surface; and 2) a free surface at which 
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Fig. i. Problem geometry. 
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the surface tension depends on temperature according to the nonlinear law 

1 
% = %2 + -2--  % (T2 T ,2.  = const,  ~ : const.  

Due t o  t h e  t h e r m a l  c o n d u c t i v i t y  o f  t h ~  f l u i d ,  t h e  t e m p e r a t u r e  d i s t r i b u t i o n  a t  t h e  f l u i d -  
fluid boundary and the free surface will be nonuniform. This gives rise to tangential thermo- 
capillary stresses and induces motion in the fluid layers. We examine a steady regime of 
such motion, when the tangential thermocapillary motion is balanced by the action of the 
viscous forces. 

Using the standard simplifying assumptions, the mathematical formulation of the problem 
includes the Navier--Stokes equations and the equations of heat conduction and continuity: 

U. OUi @ Vi OUi = __ 1 OP~ @ ~iAUi, 
' a x  OY p~ OX 

OVi aVi 1 ap~ ou; aVi U i ~ - - + V ~ - - - -  ' ----0, (1) 
aY ~ aY ~ v~Av;- -g ,  ax  T aY 

U~ OT~ ~Vi OTi -- xiAT i 
0X OY 

At the solid surface (Y = 0), we prescribe the nonslip condition and maintain a constant 
linear temperature distribution 

U1 = V1 = O, T1 = To + AX, A = const.  

A t  t h e  b o u n d a r y  s e p a r a t i n g  t h e  f l u i d s  Y = H 1, we p r e s c r i b e : ,  t e m p e r a t u r e  a n d  v e l o c i t y  c o n -  
t i n u i t y  

U1 U2, TI = T2, 

the condition of impenetrability 

heat flux continuity 

and balance of viscous forces 

V 1 ~ V 2 = O, 

aT1 OT 2 
k~ -- k~ - - ,  

OF OF 

OU 1 OU9 da1 OT~ 
qt 

OK - q 2 0 Y  ~ - - -  dT 1 OX 

At the upper boundary Y = H, we have: 

I) in the solid surface case, the nonslip condition U 2 = V 2 = 0, thermal insulation 

of the surface 8Tf/aY = 0; 

2) in the free surface case, the balance of viscous and thermocapillary forces 

OU2 0~2 OT2. 

OF dT2 OX 

nondeformation of the surface, V~ = 0, and thermal insulation, 3Tf/SY = 0. 

As will be shown below, the assumption of surface planarity is approximately fulfilled 
for heavy fluids, and for the action of sufficiently large thermocapillary pressure we have 

%1, 002 large. 

We introduce the dimensionless parameters and variables: 

X Y H1 Ho t h 
H ' g =  ~-~' h ~ - H  H , he--. H "  h =  h~ 

Pri = w--i-/- the Prandtl number. 
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We will seek a self-similar solution of the form 

H H ~ ( Y ) '  T~ = T o + AHxO~(y), 
( 2 )  

P ~ = P o i - - p ~ g H y - -  P~ vi ~(~i x~+[i (y ) ) ,  

where P0m = Pz( 0, 0) : const and P02 : P2( 0, i) = const are the pressures at the lower and 
upper boundaries, respectively. 

A self-similar solution to the problem of motion in a fluid layer was found in [5, 6]. 
In order to detemrine the unknown functions $i(Y)' @(~), fi(Y) and the constants li, we ob- 
tain from (I), (2) the following two-point boundary-value problem for the nonlinear system 
of ordinary differential equations: 

with the conditions at the bottom 

and at the upper boundary O~(I) = O: 

I) for the solid boundary case 

where 

2) for the free surface case 

~u (0) = ~ (0) = O, e ,  (o) = 1, 

~ d )  = G (1) = o; 

q~u = O, ~ (1) = m2@ 2 (1) 

/722 

At the interface y = h I we have: $1 ! 

qv$2" = itnaO~, where v = v2/Vl; q = n2/Nz; 

number at the boundary between the fluids. 

In order to reveal the characteristic 
approximate analytical solution in each of 
assuming that the Prandtl number is of the 

In the free-surface case at the upper 
this problem, and there is the possibility 

For [mil 
the form 

o~2AZH 3 

]]2~2 

= " $ 2 ' ,  $~  = $2  = 0 ,  0~=~-),,_ O i = k @ ~  , $ ~ " -  

k = k 2 / k l ;  m 1 = a lA2Ha/(qzVm) i s  t h e  Marangon i  

(3) 

features of thermocapillary flow, we obtain an 
the layers for small values of the Marangoni number, 
order of unity. 

boundary there exist two Marangoni numbers 
of carrying out an expansion in either of them. 

For generality of exposition, we will carry out the expansion in the interphase Marangoni 
number ml, assuming that both numbers are equal in order of magnitude. 

For m I = m 2 = 0, the problem has the solution 

~ : 0 ,  [ i : 0 ,  ~ i = 0 ,  @ i :  1, (4 )  

which corresponds to the fluid at rest with a uniform temperature distribution with height. 

< i, using the method of small perturbations we will construct a solution in 

~ 2  j,(2) 1 
r = m~+~ ') + " ' , w  ~- .... f~ = "hf~ '> + ~ f ? >  + ..., 

( s )  

S u b s t i t u t i n g  ( 5 )  i n  ( 3 )  and n e g l e c t i n g  t e r m s  q u a d r a t i c  i n  ml ,  we o b t a i n  

t , ,  tr 

~ §  [ i = 2 ~ ,  Pr~r ( 6 )  

To a v o i d  c o n f u s i o n  w i t h  t h e  l a y e r  number ,  h e r e  and be low we o m i t  t h e  u p p e r  i n d e x  o f  
1 d e n o t i n g  t h e  f i r s t  t e r m  o f  t h e  e x p a n s i o n .  
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The boundary conditions: 

' 1  (0) = * i  (0) = O, f l  (0) = f2 (1) = O, O~ (0) = O, O; (1) = O, 

I) ~(i) = ~z'(1) = 0 (solid boundary); 

2) ~z(1) = 0, ~z"(1) = m~/m~ (free surface); 

( 7 )  

m2/ml = o~/(~1~), (z = (z21(zl. 

At the interface y = h~: 

, 1  (hi) = , ~  (hO = O, ,Pl (hi) = , , ,~  (hi), , ; '  (hO - n ~ , ~  (hi) = 1, 

(~1 (hi) = 02 (hi), Oi (hi) = /~(~s (hi). 

Solving the boundary-value problem (6) with conditions (7), we find the fundamental 
values Ai and correspondingly the first terms of the expansion (5). 

I. Rigid Upper Boundary Case. With an accuracy up to terms of order O(m I 
(7) we obtain for the velocity, temperature and pressure fields 

3 h 

2 /h (*1 + h) 

V1 --  relY1 k l  b,2 (y __ lh), 
H 6 

U~ -- 

1TtlX'VI! 
U 1 -- 

H 

mlxv2 

3 1 

2 vh2 (~] + h)' 

V~ -- mlv~ ~2 ( g - -  1) z (Y--  h0, 
H 6 

% 1 (  2 h i ] ,  
- - T U  y -  8 �9 ] 

~2 ( y - - l )  g 
2 , 3 

2t_I-----5-- ~1 gZ _ _  x z __ 

It  

P1 = Pol - -  plgHy -+- 

2 maP2V2 
P2 = Po2 - -  p2gHg -~ 2H z 

_ _  ~2 (yZ__xZ 2 h 1 @ 4  2 h i @ l )  
�9 3 Y + - - - U - -  ' 

1 ml Pr11~l y 3 ( 3 y - - 4 h l ) l ,  T I =  To + AHx [ 
72 

z ) ,  from ( 4 ) -  

(8) 

To = To + A . x  I1 - -  I v r a o  (y- hll  n t y -  - (y - -  hl l  + 6h i - -  . 
- [ 7 2  - - ' ! 

Thi s  c a s e  c o r r e s p o n d s  t o  t h e  m o t i o n  o f  a t w o - l a y e r  f l u i d  in  t h e  gap be tween  p l a t e s  when 
h e a t e d  f rom be low.  F i g u r e  2 shows t h e  f l o w  l i n e s  and t h e  p r o f i l e  o f  t h e  h o r i z o n t a l  v e l o c i t y  
component  in  t h e  r e g i o n  x > 0 in  t h e  c a s e  where  t h e  l a y e r s  a r e  o f  e q u a l  t h i c k n e s s  h i = h 2 = 
0.5. Since the boundary conditions for the velocity are the same for both layers and from 
(4) it follows that for Marangoni number m I = 0 the vertical distribution of temperature 
is uniform, then to a first order in m I we obtain a flow pattern which is ssm~netric with re- 
spect to the interface boundary y = 0.5. Substituting the values of %i and m I into (8), 
we obtain the following estimate for the velocity: 

g i ( g  ) 1 @~hl ) ,  Ui(y)  i/(~lh2-~-~2h1). 

Fig. 2. Flow lines and profile for the hori- 
zontal component of the velocity in the region 
x > 0, for h I = h 2 = 0.5. The upper boundary 
is solid. 
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Consequently, the value of the viscosity influences only the scale of the velocity, and does 
not destroy the symmetry of the flow. In this approximation, temperature deviation from 
the initial profile does not affect the velocity field, the dependence on X appearing in 
the next higher order in m I. 

2. Free Surface Upper Boundary. In this case the solution to problem (6), (7) has 
the form 

3h (a - -  2) ~ _ 3 (~1 q- a 01 q- 2h)) 

;h - h~ (3~1 @ 4h) ' " v~lh2 (3~/q- 4h) ' 

V 1 -  nh'vl ;~q y 2 ( y - - h l )  , V._= m'~v2 ~ " - ( y - - 1 ) ( y - - h l ) ( y - - a ) ,  
H 6 H 6 

U ~ =  m ~ x  2 g i g  . . . .  2 h~' , ) t ' ~ - -  nhv~x )~.~ 
3 , - H 2 (g - -  b+) (y - -  b_), 

PI = Pol - -  o1gHY + 2H z ~1 yZ __ x z _ ~ hly,  , (9) 

where 

2 
, m~P2~;2 ;'~2 ( Y 2 - - x 2  

P~ ---: Po2 - -  p2gHy T 2H ~ - - -  
2 

- - j - ~  a - { - h l - - -  , T I = T o @ A H x  1 .ya(3g__4hl)  , 
72 

T2 = To @ AHx !l - -  m, [Pr2)~. (y - -  h~)(3 (g - -  ~1) 2 -~- 4 ( ~ /  - -  hi ) (h  1 - -  h 2 - -  a )  ~- 6h~ (a - -  hi)) - -  )~ Pr lh~]! ,  
72 " ) 

~l (1 q- h~) + a O1 (hx - -  h2) -5 2h2). 
a ~ 

~1 -5 a (~l + 2h) 

b + _ a @ h l +  l+_ 1 ] / l  @ a 2 _ } _ h ~ _ a _ h l _ a h l "  
- 3 3 

In our problem, the normal stresses at the interface boundary and at the free surface 
are not constant, and this leads to distortion of these surfaces. We will consider that 
the distortion is eliminated due to the large value of g; in this case as follows from (8) 
and (9), the pressure is primarily hydrostatic. 

In both this and the previous case, to first order in m I the velocity distribution does 
not depend on the temperature profile distortion, that is, on X or Pr. From the expressions 
for U i and V i in (9) it follows that it is possible to have different regimes of stationary 
flow in the two-layer system, depending on the parameters a and N and the thickness of the 
layers. We can distinguish three regimes: 

regime I 

2 (~1 + h) 

a > I ,  b + > l ,  h ~ < b _ < l ,  V ~ > O ,  V ~ < O ;  

regime II 

regime Ill 

cr < a<2, 

ha<a<l, hl<b• VI>O, Vu changes sign; 

r >-  2, 

a < h l ,  b - < h l ,  h1<b+<l, VI<O, V~.>O. 

Figure 3 shows flow lines for different regimes for ~ = 1/3 and equal layer thicknesses 
h I = h 2 = 0.5. 
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Fig. 3. Flow regimes in the case where the upper boundary is a free 
surface: a) the bounds of the regimes as a function of the parameters 

and q; b-f) flow lines for q = 1/3, h I = h~; b) regime I, ~ = 1/16; 
c) regime II, ~ = 1/6; d) regime II, ~ = 1/2; e) regime II, e = i; 
f) regime III, ~ = 3. The values of the stream function (numbers on 
the curves) are given in units of 10 -2 ~iml 

For small ~ corresponding to the first regime ~ < ~* (Fig. 3b, ~ = 1/16), the surface 
tension between the fluids is much larger than at the free surface. The intensity of motion 
in both layers is of the same order, the direction of the vortices and the flow pattern are 
similar to the rigid upper boundary case. 

In the second regime, ~* < ~ < 2, there is a competition between motions engendered 
by the Marangoni forces at the boundary between fluids and at the free surface (Fig. 3d-f). 
For sufficiently small ~ close to ~*, another vortex with direction opposite that of the 
circulation arises near the surface (Fig. 3d), and motion in the lower layer is diminished. 
With subsequent growth in ~ (Fig. 3e-f) the dimensions of the vortex at the free surface 
and the magnitude of the circulation both increase, the middle vortex contracts with a re- 
duction in strength. As a result the vortical motion velocity drops in the lower layer. 

We should single out the value e = 2. In this case, as is evident from (9), the lower 
fluid is motionless, while in the upper there is quite intense single-vortex motion, the 
structure of the flow not depending on the ratio of the layer thicknesses. This means that 
by covering the working fluid with another fluid of certain properties, it is possible to 
either decrease or suppress thermocapillary convection In the lower layer. 

To interpret our solution (9), we must consider the ratio of the thickness of the upper 
layer to the lower h = h2/h I to be greater than or of the order of m I. 

In the third regime ~ > 2 (Fig. 3c) the motion is determined by the Marangoni forces 
at the free surface. The direction of vortical motion in the lower fluid changes to the 
opposite direction, and the intensity of the motion in the upper layer is considerably 
greater than in the previous cases. 

In all regimes the fluid flow in the lower layer changes direction for y = 2hi/3. 

The influence of the ratio of viscosities q on the fluid motion is weaker than that 
of the parameter ~ = ~2/~i (Fig. 3a). For ~ > 1/2, a change in q does not lead to a change 
in flow regime, but merely influences the position of the separation boundary between vor- 
tices and the turning plane of the fluid in the upper layer. For 0 < ~ < 1/2, the transition 
from the first regime to the second occurs for q ~ 2~h(l - 2~). 

Figure 4 shows the distribution of the horizontal component of the velocity with height 
for both the case of equal (Fig. 4a) and different (Fig. 4b) layer thicknesses. We see that 
the structure of the flow is unchanged by changes in h I. The intensity of the flow in the 
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Fig. 4. Distribution of the horizontal component of the velocity 
with depth for various ratios of layer thicknesses, a) h2/h i = i; 
b) h2/h i = 0.25. Curves 1-4 correspond to e = 1/16, i, 2, 3, respec- 
tively. 
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Fig. 5. Distribution of the deviation of temperature 8 with depth 
for q = 1/3: a) X = 2, various flow regimes; curves 1-5 correspond 
to ~ = 1/16 (regime I), I/6, i/2, 1 (regime II), 3 (regime III), 
respectively; b) various ratios of the thermal diffusion coefficients 
X = X2/Xi for fixed Pr i, ~ = 1/6 (regime II); curves 1-4 correspond 
to X = =, 2, 0.825, 0.5, respectively. 

lower layer undergoes insignificant changes and in the upper layer in regimes II and III 
(curves 2-4) the intensity decreases with increasing thickness of the lower layer h i . This 
is because the competition of motions engendered by the Marangoni forces occurs in a smaller 
volume and as a result, the motions strongly inhibit one another. 

Figure 5a shows the deviation of the temperature from the linear profile 

O= 1 2 ( Y ~ - - ( T o +  Aflx)),  i =  l, 2. 
mx PriAHx 

It is evident from a comparison of Fig. 5a and Fig. 3 that the extrema of 0(y) correspond 
to the boundaries separating vortices - regions in which the intensity of the motion is 
maximum. 

We will examine in more detail the variation of the temperature profile with depth in 
regimes I and II (curves 1-4, Fig. 5a). Since the prescribed temperature gradient is main- 
tained at the bottom, the temperature rises with increasing distance from the center x > 0. 
Fluid elements from the bottom layer are drawn in by the vortex and are carried to the colder 
central region, lose heat and are returned to the boundary separating the fluids with lower 
temperature than that prescribed by the initial distribution. The circulation is directed 
in the opposite direction in the upper layer, the fluid is carried into the hot region, is 
heated and returned to the boundary separating the vortices (or to the surface, in the case 
of regime I) with a higher temperature than at the boundary between layers. This temperature 
value is the local maximum temperature in the fluid. In the presence of a third vortex (re- 
gime II) in the near-surface layer heat transfer occurs as in the lower layer, and the tem- 
perature drops. In regime III, where the motion is determined by the Marangoni forces at 
the free surface, the direction of the fluid circulation is opposite. Consequently, the 
fluid is heated in proportion to its approach to the boundary separation (curve 5) and cools 
when receding. 

Figure 5b gives the temperature deviation 8(y) for various X = X2/Xi- For X + ~ we 
observe a uniform temperature distribution in the upper fluid layer (curve i). The magni- 
tude of the deviation from its initial value (T o + AHx) is determined by the temperature 
at the separation boundary. For decreasing X the influence of thermal conductivity is re- 
duced in comparison with that of the convective transfer of heat. 
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NOTATION 

X, Y, x, y are dimensional and dimensionless Cartesian coordiantes; Hi, hi are dimen- 
sional and dimensionless thicknesses of the i-th fluid layer; H = H~ + H 2 is the total thick- 
ness of the fluid layers; h = h2/h I is the ratio of the upper layer thickness to the lower; 
Ui, V i are the horizontal and vertical velocity components; Pi, Ti are the pressure and temper- 
ature in the i-th fluid layer, respectively; o i = o0i + i/2~i (T i - T0) 2 is the coefficient 
of surface tension; T o is the temperature corresponding to the extremum value of the coeffi- 
cient of surface tension; o0i is the extremum of oi; a i is a coefficient in the oi dependence; 

= ~2/~I is the ratio of these coefficients; ~* is the value of ~ corresponding to the boun- 
dary between regimes I and II; A is the coefficient of the temperature dependence at the 
lower boundary; g is the acceleration of gravity; Pi is the density of the i-th fluid layer; 
P01, P02 are the pressures on the axis of symmetry at the lower and upper boundaries of the 
system; vi, Ni, Xi, ki are the coefficients of kinematic and dynamic viscosity, thermal dif- 
fusivity and thermal conductivity; v = ~2/vI, N = n2/N1, X = X2/XI, k = k2/k I are the ratios 
of the coefficients of kinematic and dynamic viscosity, thermal diffusivity and thermal con- 
ductivity of the upper and lower layers; Pr i = vi/Xi is the Prandtl number; m i = ~iA2Ha/ 

(~ivi) is the Marangoni number; e -- 12(T~To--AHx) is the deviation of the fluid temperature 
m:PqAHx 

from the linear profile. The lower index i = 1 denotes the variable and coefficient values 
for the lower layer, i = 2 denotes those for the upper layer; the upper index (i) indicates 
the first term of an expansion; ' denotes differentiation with respect to y. 
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